Chemistry 4th Nine Weeks: Scope and Sequence | Content Standards | Dates
Taught | % of Students | Dates
Re-taught | Formative and Summative Assessments/ (Any Additional | |---|-----------------|---------------|--------------------|--| | | | scoring | (Optional) | Comments Optional) | | | | 70% and | | | | ACCC (4) Describe and hills the transfer of the second standard | | over | | | | ACOS (4) Describe solubility in terms of energy changes associated | | | | | | with the solution process. | | | | | | Using solubility curves to interpret saturation levels | | | | | | Describing acids and bases in terms of strength, concentration, pH,
and neutralization reactions | | | | | | Solving problems involving molarity, including solution preparation | | | | | | and dilution | | | | | | ACOS (5) Use the kinetic theory to explain states of matter, phase | | | | | | changes, solubility, and chemical reactions. | | | | | | Example: | | | | | | ACOS (6) Solve stoichiometric problems involving relationships among | | | | | | the number of particles, moles, and masses of reactants and products | | | | | | in a chemical reaction. | | | | | | Predicting ionic and covalent bond types and products given known reactants | | | | | | Assigning oxidation numbers for individual atoms of monatomic and | | | | | | polyatomic ions. | | | | | | Identifying the nomenclature of ionic compounds, binary
compounds,, and acids | | | | | | Classifying chemical reactions as composition, decomposition, single
replacement, or double replacement | | | | | | Determining the empirical or molecular formula for a compound | | | | | | using percent composition [chapter 12] | | | | | | ACOS (7) Explain the behavior of ideal gases I terms of pressure, | | | | | | volume, temperature, and number of particles using Charles's law, | | | | | | Boyle's law, Gay –Lussac's law, the combined gas law, and the ideal | | | | | | gas law, | | | | | | ACOS (8) Distinguish among endothermic and exothermic physical | | | | | | and chemical changes. | | | | | | Calculating temperature change using specific heat | | | | | | Using LeChatlier's principle to explain changes in physical and
chemical equilibrium | | | |--|--|--| | ACOS (9) Distinguish between chemical and nuclear reactions. Identify atomic and subatomic particles Calculate half-life of selective radioactive isotopes Contrast fusion and fission Identify types of radiation and their properties | | | | | | |